Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae

نویسندگان

  • Shuhei Noda
  • Tomokazu Shirai
  • Keiichi Mochida
  • Fumio Matsuda
  • Sachiko Oyama
  • Mami Okamoto
  • Akihiko Kondo
  • Alvaro Galli
چکیده

To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC), which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L) than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

منابع مشابه

Isolation and Characterization of Melanin Producing Pseudomonas stutzeri Strain UIS2 in the Presence of l-tyrosine and Survey of Biological Properties of Its Melanin

Background: Melanin is a negative charge hydrophobic complex pigment. Melanin is produced naturally in bacteria to protect them against UV, free radicals and environmental stresses. Pigment production in bacteria has more advantages than other biosources due to its rapid growth, higher efficiency and easier extraction. The aim of this study was the isolation, biochemical and molecular identific...

متن کامل

An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.

Benzylisoquinoline alkaloids (BIAs) are a diverse family of plant-specialized metabolites that include the pharmaceuticals codeine and morphine and their derivatives. Microbial synthesis of BIAs holds promise as an alternative to traditional crop-based manufacturing. Here we demonstrate the production of the key BIA intermediate (S)-reticuline from glucose in Saccharomyces cerevisiae. To aid in...

متن کامل

Isolation of indigenous Glutathione producing Saccharomyces cerevisiae strains

Background: Glutathione (GSH) is a non-protein thiol compound, which plays an important role in the response to oxidative stress and nutritional stress. The aim of this study was to isolate indigenous S. cerevisiae strains capable of effectively produce GSH. Methods: One hundred-twenty sweet frui...

متن کامل

Evolution, structure and function of mitochondrial carriers: a review with new insights.

The mitochondrial carriers (MC) constitute a large family (MCF) of inner membrane transporters displaying different substrate specificities, patterns of gene expression and even non-mitochondrial organelle localization. In Arabidopsis thaliana 58 genes encode these six trans-membrane domain proteins. The number in other sequenced plant genomes varies from 37 to 125, thus being larger than that ...

متن کامل

Identification, Cloning and Structural Analysis of Major Genes from Portulaca oleracea L. Hairy Roots that Involved in the Biosynthesis of Dopamine

Dopamine is one of the important medications of Portulaca oleracea L. To optimize the production of dopamine, one of the methods is the identification and engineering of metabolite pathways. To investigate the tyrosine decarboxylase (TDC) and tyrosinase, which seem to be the most important genes in dopamine synthesis pathway, hairy roots were produced from Portulaca oleracea using Agrobacterium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015